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Duplicate patient records pose a major problem for many immuniza-
tion registries, as well as for many electronic patient record systems.
This paper reports two complementary studies exploring the deduplica-
tion of immunization registry records. One study explores the utility
of different demographic data elements, singly and in combination, to
assist in the deduplication process. The second study explores how
clinical patient data (vaccination history data) might assist in this
process. To assess the utility of demographic data elements, data were
used from three registries after duplicates had been identified. A com-
puter program, IMM/Scan, was written to count the number of true-
positive (TP) matches and false-positive (FP) matches found when
using different Boolean combinations of demographic data elements.
In this study, a strategy of “ORing high value ANDed pairs of data
elements” appeared to be most powerful. To assess the utility of vacci-
nation history data, record pairs were drawn from 440,000 patient
records. Two metrics on patient history were tested: (1) the number
of identical doses shared by two records, and (2) the number of “extra”

doses in the combined history of two records. In this study, sample
findings include: (1) for pairs of nonduplicate records, 93% had no
identical doses and 90.6% had “extra” doses, and (2) for pairs of
duplicate records, 83.8% had one or more identical doses and 82%
contained no “extra” doses. These studies demonstrate potentially use-
ful approaches to using demographic data and patient history data to
assist the automated deduplication of immunization patient records.
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1. INTRODUCTION

There is currently a major national initiative to build
childhood immunization registries for many different states,
countries, cities, school systems, and health care organiza-
tions [1]. Particularly when records from multiple sources
are pooled, for example in a statewide immunization registry,
there are typically many duplicate patient records. Such a
registry may have hundreds of thousands or millions of
patient records, the majority of which are duplicates. As a
child reaches 4 to 6 years of age, a record may include 18
or more vaccine doses involving 6 or more vaccine series.

This paper presents the results of a cooperative research
project supported by the Centers for Disease Control and
Prevention that involves two complementary studies focus-
ing on the deduplication of immunization registry records.
The first study explores the utility of different demographic
data elements, singly and in combination, to assist in the
deduplication process. The goal is to explore these utilities
systematically and to assess the efficiency tradeoffs in-

volved.

The second study explores how clinical patient data (vac-
cination history data) might assist in the deduplication pro-
cess. Most, if not all, automated deduplication of patient
records has focused on using demographic data. The authors
know of no other published work describing the use of
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vaccination history data to assist in patient record deduplica-
tion. This study provides an example, illustrated using immu-
nization data, of how the clinical content of a patient record
might be used to assist in the deduplication process.

2. BACKGROUND

Duplicate records pose a potential problem for any trans-
action database containing demographic data. The problem
is amplified by the absence of an accepted unique patient
identifier. The difficulty of deduplicating records using de-
mographic data reflects many factors, for example: (1) there
are many common names; (2) a name may be spelled or
expressed several ways; (3) a person’s name may change;
(4) addresses frequently change; (5) some registries do not
record social security number for privacy reasons; (6) many
children do not have a social security number; (7) fields
may be blank; and (8) diverse data entry errors may occur.
The problem of duplicate records is particularly important
as health care systems integrate patient data from many
institutions to build an enterprise master patient index
(EMPI).

The presence of duplicate patient records in an immuniza-
tion registry has been identified as an important problem
[2]. As a registry matures, it may receive data from an
increasing number of sources. The amount of missing, dupli-
cate, and incorrect data may also increase. Problems with
data quality have proven to be greater than originally antici-
pated. As a result, immunization registries have been forced
to make data quality assurance a high priority and to allocate

substantial resources to the task [3–5].

A variety of software tools and approaches have been

developed to assist in the deduplication process [2, 6–8].
These apply deterministic or probabilistic matching strate-
gies to demographic data elements, such as date of birth,
last name, first name, social security number, address, parent
name, and guardian name, to attempt to identify likely dupli-
cate records.
3. EXPLORING THE UTILITY OF DEMOGRAPHIC
DATA ELEMENTS

The first study explores the relative utility of different
demographic data elements, individually and in different
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Boolean combinations, to assist in the deduplication process,
using data from three immunization registries.

3.1. Three Test Immunization Data Sets

We obtained immunization data sets from three registries:
a small western county (SWC) with 9728 patient records, a
large western county (LWC) with 193,323 patient records,
and a large eastern city (LEC) with 169,410 patient records.
Both the SWC and LWC data sets allow multiple records
for the same individual, so that we had a record of the
previous deduplication efforts that had been carried out by
these two registries. In the LWC data set, 2823 individuals
have 6 or more records each. In the much smaller SWC data
set, 18 individuals have 6 or more records each. In a few
instances, individuals had more than 20 records. The LEC
registry merges records so that a single record is maintained
for each individual.

Thus each data set had already been subjected to the
internal deduplication processes of the three registries. We
then subjected all three data sets to further deduplication
using the commercial AutoMatch 4.2 software [8] (from
MatchWare Technologies, Inc.) and using MS Access data-
base queries. AutoMatch runs and Access queries were de-
signed for each data set to identify probable duplicates which
had been missed by the registries’ internal processes. All of
the AutoMatch and Access results were reviewed manually
and a decision was made as to which records should be
identified as duplicates.

In this fashion, we created three deduplicated “test” data
sets, which contained all the original records in each dataset
together with an indication of which records had been identi-
fied as duplicates. Deduplication of records in a large immu-
nization registry is always a process of incrementally ap-
proaching an idealized goal. It is impossible to determine
with absolute certainty all the records that are duplicates.
Even manual examination of each original patient record in
the various providers’ clinics could still leave considerable
uncertainty. Our test data sets are therefore not expected to
be fully deduplicated in an absolute sense. They represent
a “best result” of significant work by the registry staff and

by our research project staff using state-of-the-art software.
The results described below must be interpreted in this
context.

3.2. The IMM/Scan Computer Program

The goal of this study is to help understand how core
demographic data elements contribute, both singly and in
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combination, to the identification of the duplicate records
in the test versions of three data sets. To allow us to explore
this question in a comprehensive and flexible fashion, we
built a computer program, IMM/Scan, to assist in the process.
IMM/Scan takes as its input (1) a specified test data set, (2)
a file outlining the data fields in that data set, and (3) a
“predicate” indicating which data elements to use in search-
ing for duplicates, and how those elements are to be com-
bined. Example predicates include:

1. “date of birth” and “last name,”
2. “last name” and (“first name” or “middle name”).

For a given record (R), the first predicate will identify as
potential matches all records with the identical value for
date of birth and last name as R. The second predicate will
identify all records with the identical value for last name as
R, and the identical value as R for first name and/or for
middle name. (If either or both values for a field being
compared are blank, they are not considered identical.)

3.3. Operation of IMM/Scan

IMM/Scan first reads in the test data set and performs
certain simple data cleaning. This includes removing leading
and trailing blanks, and for certain fields (such as middle
name) removing periods and other punctuation. In addition,
all letters are converted to upper case.

IMM/Scan then applies the specified predicate. In the
process, IMM/Scan computes a variety of measures. The
unit of analysis used in this processing is the record. For
each patient record (R) in the data set, IMM/Scan computes
the following measures.

1. The number of “real matches” for R. These are all
the other records in the database that have been identified
(by the registry staff and by our research staff) as being a
duplicate record for R.

2. The number of “true positives” (TPs) matched to R
by the predicate. These are all the real matches (as defined
above) which are identified as possible matches for R by

the predicate.

3. The number of “false positives” (FPs) matched to
R by the predicate. These are all the records which are
identified as possible matches for R by the predicate, which
are not real matches.

The measures described above are determined for each
record. IMM/Scan also computes the following average
measures.
39

1. The average number of “real matches” (ARM) for each
duplicate record in the data set.

2. The average number of “true positives” (ATP) for each
duplicate record in the data set.

3. The average number of “false positives” for all records
in the data set.

4. The “true positive percentage” (TP%) which is defined
as follows: (ATP/ARM) 3 100.

These measures were computed for all core demographic
data elements in each data set, individually and in a variety
of combinations.

3.4. Results

Tables 1, 2, and 3 show the results of IMM/Scan’s analysis
for the three data sets: SWC, LWC, and LEC, respectively.
All the tables have the same basic format. Taking Table 1
as an example, the first four lines contain basic information
about the data set as a whole.

1. The number of duplicate records indicates how many
records have one or more duplicates in the data set.

2. The number of “singleton” records indicates how many
records have no duplicate records in the data set.

3. The “average real matches (per dup)” (ARM) is defined
in the preceding section, and is used as the basis for calculat-
ing the TP% in the remainder of the table.

Next, Table 1 shows a list of the core data elements in
the data set. Next to each is shown the average TPs, the
TP%, and the average FPs for that data element used alone
as a single predicate, as well as the frequency of that data
element in the data set (the percentage of records that have
a non-blank value for that data element).

Following the individual data elements, Table 1 shows a
list of predicates that involve pairs of data elements ANDed
together, and their results. (A logical AND is represented
by an ampersand, “&”.) Next are several more complex
predicates involving several data elements ANDed together.

Finally, the table shows a set of predicates that are Boolean
expressions involving more complex combinations of sev-

eral data elements, linked by both ANDs and ORs. (A logical
OR is represented by a vertical bar, “.”.)

3.5. Discussion

There are two underlying goals in performing this type of
record duplication. These goals involve an implicit tradeoff.
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TABLE 1

Results for the Small Western County (SWC) Data Set

Avg TPs Avg FPs Data element
SWC data set (per Dup) TP % (per record) frequency (%)

Duplicate records: 4,742
“Singleton” records: 4,984
Total records: 9,726
Average real matches (per Dup): 1.69
Last name (LN) 1.59 94.2 8.06 100
First name (FN) 1.48 87.7 18.9 99.9
Middle name (MidN) 0.54 31.8 252 61
DOB 1.59 94.0 1.60 99.0
Sex 1.51 88.9 4,515 96
Mother’s maiden name (MMN) 0.10 6.1 0.13 12
Race 0.47 27.6 4,045 67
SSN 0.16 9.3 0.03 13
Address (Addr) 0.84 49.6 4.04 96
LN & FN 1.41 83.1 0.02
LN & DOB 1.49 88.2 0.07
LN & MidN 0.52 30.6 0.28
LN & Sex 1.42 83.9 3.70
LN & MMN 0.10 5.9 0.02
LN & Race 0.45 26.6 3.41
LN & SSN 0.15 8.9 0.002
LN & Addr 0.79 46.7 0.70
FN & DOB 1.41 83.0 0.02
FN & MidN 0.50 29.7 0.63
FN & Sex 1.33 78.6 17.1
FN & MMN 0.10 6.0 0.0004
FN & Race 0.45 26.8 9.67
FN & SSN 0.15 8.6 0
FN & Addr 0.74 43.9 0.02
DOB & MidN 0.52 31.0 0.04
DOB & Sex 1.45 85.7 0.78
DOB & MMN 0.10 6.0 0.01
DOB & Race 0.46 27.0 0.50
DOB & SSN 0.16 9.3 0.0002
DOB & Addr 0.80 47.2 0.05
Address & MidN 0.31 18.5 0.12
Address & Sex 0.76 45.0 1.89
Address & MMN 0.05 2.7 0.02
Address & Race 0.28 16.7 1.44
Address & SSN 0.08 4.5 0.001
LN & DOB & Addr 0.74 44.0 0.03
LN & DOB & FN 1.33 78.4 0.002
LN & DOB & FN & Addr 0.67 39.5 0
LN & DOB & FN & Addr & Race 0.27 15.9 0
LN & DOB & FN & Addr & MMN 0.05 2.7 0
LN & DOB & FN & Addr & Sex 0.62 36.9 0
LN & DOB & FN & Addr & SSN 0.07 4.1 0
LN & DOB & (FN . Addr . MMN . MidN . SSN) 1.44 85.2 0.041
LN & DOB & (FN . Addr) 1.42 84.1 0.037
LN & DOB & (FN . MMN) 1.34 79.0 0.007
LN & DOB & (Addr . MMN) 0.82 48.7 0.037

LN & (DOB . FN . SSN) 1.58 93.4 0.09
LN & (DOB . FN . SSN . Addr . MidN . MMN) 1.59 93.8 0.98
FN & (DOB . LN . SSN) 1.48 87.7 0.04
FN & (DOB . LN . SSN . Addr . MidN . MMN) 1.48 87.7 0.67
DOB & (LN . FN . SSN) 1.57 93.0 0.08
DOB & (LN . FN . SSN . Addr . MidN . MMN) 1.59 93.9 0.12
LN . DOB 1.69 99.98 9.6
LN & DOB . LN & FN . LN & SSN . DOB & FN . DOB & SSN 1.65 97.6 0.11



DEDUPLICATING IMMUNIZATION PATIENT RECORDS 41

TABLE 2

Results for the Large Western County (LWC) Data Set

Avg TPs Avg FPs Data element
LWC data set (per Dup) TP % (per record) frequency (%)

Duplicate records: 89,070
“Singleton” records: 104,253
Total records: 193,323
Average real matches (per Dup): 4.96
Last name (LN) 4.89 98.6 117 100
First name (FN) 4.94 99.6 318 100
Middle name (MidN) 1.95 39.3 887 37
DOB 4.95 99.7 27 100
Sex 4.96 99.9 ,96,000 100
Race 4.93 99.5 ,104,000 100
SSN 2.43 49.0 0.00005 31
Address (Addr) 1.84 37.1 30 93
LN & FN 4.88 98.3 0.33
LN & DOB 4.88 98.3 0.10
LN & MidN 1.94 39.1 1.09
LN & Sex 4.89 98.5 59
LN & Race 4.88 98.4 72
LN & SSN 2.43 48.9 0.00005
LN & Addr 1.81 36.5 1.04
FN & DOB 4.92 99.2 0.09
FN & MidN 1.95 39.3 2.71
FN & Sex 4.93 99.4 308
FN & Race 4.92 99.1 211
FN & SSN 2.43 48.9 0.00
FN & Addr 1.84 37.0 0.09
DOB & MidN 1.95 39.3 0.14
DOB & Sex 4.94 99.6 14
DOB & Race 4.92 99.2 15
DOB & SSN 2.43 48.9 0.00005
DOB & Addr 1.84 37.0 0.06
Address & MidN 0.71 14.2 0.27
Address & Sex 1.84 37.1 16
Address & Race 1.83 36.9 19
Address & SSN 0.89 18.0 0.00003
LN & DOB & Addr 1.81 36.4 0.04
LN & DOB & FN 4.86 98.0 0.0006
LN & DOB & FN & Addr 1.80 36.3 0.0002
LN & DOB & FN & Addr & Race 1.80 36.3 0.0001
LN & DOB & FN & Addr & Sex 1.80 36.3 0.0002
LN & DOB & FN & Addr & SSN 0.89 17.9 0.00001
LN & DOB & FN & Addr & Sex & Race & SSN 0.37 7.4 —
LN & DOB & (FN . Addr . MidN . SSN) 4.87 98.1 0.04
LN & DOB & (FN . Addr) 4.87 98.1 0.04

LN & DOB & (FN . SSN) 4.86 98.0 0.0006
LN & DOB & (Addr . SSN) 3.37 67.9 0.04
LN & (DOB . FN . SSN) 4.89 98.6 0.44
LN & (DOB . FN . SSN . Addr . MidN) 4.89 98.6 2.36
FN & (DOB . LN . SSN) 4.94 99.6 0.42
FN & (DOB . LN . SSN . Addr . MidN) 4.94 99.6 3.20
DOB & (LN . FN . SSN) 4.95 99.7 0.19
DOB & (LN . FN . SSN . Addr . MidN) 4.95 99.7 0.34
LN . DOB 4.96 99.985 144
LN & DOB . LN & FN . LN & SSN . DOB & FN . DOB & SSN 4.96 99.94 0.53
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TABLE 3

Results for the Large Eastern City (LEC) Data Set

Avg TPs Avg FPs Data element
LEC data set (per Dup) TP % (per record) frequency (%)

Duplicate records: 2,857
“Singleton” records: 166,553
Total records: 169,410
Average real matches (per Dup): 1.028
Last name (LN) 0.58 56.1 222 100
First name (FN) 0.93 90.1 261 99.98
Middle name (MidN) 0.07 7.2 395 73
DOB 0.60 58.2 66 100
Sex 0.96 93.0 ,83,000 99.6
Birth Hospital (Brth Hosp) 0.03 3.0 4,883 72
Birth Certificate ID (BCID) — 0.0 0.006 14
Sequence No. of Birth (SeqNo) 0.03 2.4 ,44,000 71
Guardian last name (GLN) 0.43 41.8 157 85
Guardian first name (GFN) 0.39 37.9 312 85
SSN 0.04 4.0 0.003 31
Address (Addr) 0.32 30.8 1.61 99.1
LN & FN 0.49 47.7 0.35
LN & DOB 0.16 15.8 0.12
LN & MidN 0.03 2.7 0.54
LN & Sex 0.54 52.5 110
LN & BrthHosp 0.02 1.6 8.23
LN & SeqNo 0.02 1.8 89
LN & GLN 0.32 30.6 34
LN & GFN 0.30 29.2 0.72
LN & SSN 0.04 3.8 0.001
LN & Addr 0.20 19.3 0.31
FN & DOB 0.53 51.6 0.12
FN & MidN 0.07 6.8 4.96
FN & Sex 0.86 84.0 251
FN & Brthhosp 0.03 2.9 9.80
FN & SeqNo 0.02 1.9 136
FN & GLN 0.38 37.1 0.22
FN & GFN 0.35 34.1 0.93
FN & SSN 0.03 3.3 0.0008
FN & Addr 0.28 27.0 0.01
DOB & MidN 0.05 4.9 0.19
DOB & Sex 0.56 54.1 33
DOB & BrthHosp 0.02 1.9 2.49
DOB & SeqNo 0.01 1.3 39
DOB & GLN 0.19 18.0 0.09
DOB & GFN 0.15 14.3 0.16
DOB & SSN 0.02 1.5 0.0006
DOB & Addr 0.17 16.1 0.04
Address & MidN 0.02 1.8 0.013
Address & Sex 0.31 29.7 0.81
Address & BrthHosp 0.02 1.5 0.21
Address & SeqNo 0.01 1.4 0.49

Address & GLN 0.18 17.9 0.44
Address & GFN 0.18 17.1 0.41
Address & SSN 0.01 1.4 0.0005
LN & DOB & Addr 0.05 4.7 0.03
LN & DOB & FN 0.10 10.0 0.0004
LN & DOB & FN & Addr 0.02 2.2 0.0002
LN & DOB & FN & Addr & BrthHosp 0.0007 0.1 0.0002
LN & DOB & FN & Addr & GFN 0.01 1.0 0.0002



LN & (DOB . FN . SSN) 0.56 54.1 0.46
LN & (DOB . FN . SSN . Addr . MidN . GFN . GLN) 0.57 55.3 36
FN & (DOB . LN . SSN) 0.92 89.7 0.46

N

FN & (DOB . LN . SSN . Addr . MidN . GFN . GLN)
DOB & (LN . FN . SSN)
DOB & (LN . FN . SSN . Addr . MidN . GFN . GLN)
LN . DOB
LN & DOB . LN & FN . LN & SSN . DOB & FN . DOB & SSN
LN & DOB . LN & FN . LN & SSN . DOB & FN . DOB & SSN . F

1. The primary goal is to achieve as high a true-positive
rate as possible.

2. The second goal is to reduce the false-positive rate to
be as low as possible, while degrading (reducing) the true-
positive rate as little as possible.

It is important to keep these two conflicting goals in mind
when interpreting the results.

The small western county (SWC) data set. We will dis-
cuss the SWC results (Table 1) first in some detail, and then
the other results more briefly. In the fourth data column
across from each single data element name is the frequency
of that data element in the data set. Notice that three data
elements, last name (LN), first name (FN), and date of
birth (DOB), are almost always (991%) present, and two
additional data elements, Sex and Address (Addr), are each
96% present. The other data elements are frequently absent,
which affects the later results in the table.

Looking first at the results for the single data elements,
LN and DOB have the highest true-positive percentage

(TP%), 94.2 and 94.0%, but have a quite high level of false
positives (FPs), 8.06 and 1.60. As one would expect, Sex
has quite a high TP% (88.9%), but a tremendously high
level of FPs (4515). Looking next at the ANDed pairs of
data elements, notice that when elements that by themselves
have a high TP% and a high frequency are ANDed together
(e.g., “LN & FN”), the results maintain quite a high TP%
(although there is some degradation) and the level of FPs
0.92 89.8 6.48
0.59 57.5 0.23
0.59 57.8 0.61
1.01 98.6 287
0.98 95.6 0.58

& SSN 0.98 95.6 0.58

tends to be much lower than with the individual data ele-
ments. Looking next at the predicates where three or more
data elements are ANDed together, one can see that the TP%
now degrades significantly, even though the level of FPs
drops to very low levels.

Looking finally at the predicates with ORs in addition to
ANDs, one can see that the use of ORs has the potential to
keep TP% high, while allowing FPs to be kept quite low.
At one extreme, if one simply ORs together two data ele-
ments each of which have individual high TP% (see “LN .
DOB”), one can achieve a very high TP% (99.98%) but at
the expense of a quite high level of FPs (9.6).

Of all the strategies for combining data elements explored,
the most powerful was a strategy that might best be called
“ORing high-value ANDed pairs.” An example of this is
seen in the last line of the table. This predicate can be
expressed as follows: “(LN & DOB) . (LN & FN) . (LN &
SSN) . (DOB & FN) . (DOB & SSN).” As seen in Table
1, this predicate has a significantly higher TP% (97.6%)
than any other predicate listed (with the exception of “LN
DEDUPLICATING IMMUNIZATION PATIENT RECORDS 43

TABLE 3—Continued

Avg TPs Avg FPs Data element
LEC data set (per Dup) TP % (per record) frequency (%)

LN & DOB & FN & Addr & GLN 0.01 1.0 0.0002
LN & DOB & FN & Addr & Sex 0.02 1.9 0.0002
LN & DOB & FN & Addr & SSN 0.001 0.1 —
LN & DOB & (FN . MidN . Addr . GFN . GLN . BrthHosp) 0.15 14.8 0.047
LN & DOB & (FN . Addr) 0.13 12.5 0.026
LN & DOB & (FN . GFN) 0.14 13.5 0.023
LN & DOB & (FN . GLN) 0.15 14.2 0.037
LN & DOB & (Addr . GLN) 0.09 8.9 0.042
. DOB”) and achieves this with only a very modest level of
FPs (0.11).

The large western county (LWC) data set. The LWC
data set (Table 2) is much larger than the SWC data set
discussed above, and has a high level of duplicate records.
Because the database is so much larger, the number of false
positives is often much larger as well. Nevertheless, the
same overall pattern of results described for the SWC data



44

set still holds for this data set. The predicate “LN . DOB”
again yields a very high TP% (99.985%) but with a very
high level of FPs (144). Here again the most powerful strat-
egy seems to be that of “ORing high-value ANDed pairs.”
As seen on the last line of Table 2, this predicate yields a
TP% of 99.94% with a level of FPs of 0.53.

The large eastern city (LEC) data set. The LEC data
set is interesting from several perspectives. First, the level
of duplicate records is much lower than in the other two
data sets (1.7% in the LEC data set compared to almost 50%
in the LWC and SWC data sets). Also, the average number
of real matches per duplicate record is also low (1.028 com-
pared to 1.69 and 4.96 for the other data sets). This reflects
the fact that the LEC registry had removed from the data
set any duplicates which they had previously identified. As
a result, this data set was inherently much cleaner than the
other two.

Another interesting observation is that the data elements
LN and DOB, when applied singly, do not have as high
TP% (56.1 and 58.2%, respectively) as in the other data
sets. This presumably reflects the fact that the LEC registry
has already used these two data items extensively as a basis
for removing duplicates from the data set. In contrast, FN
has a significantly higher TP% (90.1%), presumably re-
flecting the fact that that element has not figured as promi-
nently in the registry’s own searching for duplicates as LN
and DOB.

Although the numbers are considerably lower for this data
set, the overall pattern is still quite similar to that of the
other two data sets. Here again the predicate “LN . DOB”
has the highest TP% (98.6%), but as expected has a high
level of FPs (287). The strategy of “ORing high-value
ANDed pairs” (see the last two lines of Table 3) again
appears to be the most powerful overall, achieving a TP%
of 95.6% while keeping the level of FPs to 0.58.

3.6. General Observations

One general observation that can be made based on these
results is that the utility of any specific data element to
assist in the deduplication process will vary from registry

to registry, depending on factors such as (1) the frequency
of that data element in the database, and (2) the nature
of any deduplication that has already been performed. For
example, if previous deduplication has heavily focused on
LN and DOB, then these elements will not be as useful in
finding new duplicates as in certain other registries, where
for example less previous deduplication may have been
performed.
MILLER, FRAWLEY, AND SAYWARD

When considering different strategies for combining sev-
eral data elements in a Boolean expression (an expression
involving ANDs and ORs), it is useful to bear in mind the
two conflicting goals discussed previously of (1) trying to
achieve a high level of TPs, while (2) trying to reduce
the level of FPs as much as possible without significantly
degrading the level of TPs. From this perspective, the use
of ANDs alone has limited value. The data show that when
several data elements are ANDed, the FP level can be re-
duced to very low levels but at a potentially major penalty
in the level of TPs. Conversely, using ORs alone (e.g., “LN
. DOB”) can achieve an extremely high level of TPs, but
this is accompanied by a quite high level of FPs.

As discussed previously, the most powerful strategy over-
all for all three data sets appeared to be that of “ORing high-
value ANDed pairs.” It is interesting to observe that when
a registry uses a commercial deduplication tool such as
AutoMatch, they tend to use it in an iterative fashion, per-
forming multiple runs. Each run typically consists of a set
of “blocking” ANDs to partition the database, followed by
a probabilistic matching of one or more additional data
elements. The probabilistic matching may include using
“Soundex” algorithms on first and last names. Such a run
can be thought of as a search involving ANDs, but with a
probabilistic matching component added. In the present
study, we used AutoMatch and its probabilistic capabilities
to help identify duplicate records initially when constructing
our test data sets, but did not include probabilistic matching
in IMM/Scan. Probabilistic matching is clearly useful in
practice (and would complement whatever Boolean strategy
is used), but was not the focus of our study. When several
different AutoMatch runs are performed and the results are
examined, one is in a sense performing the ORing of several
ANDed searches. One difference between this approach and
that of IMM/Scan, however, is that IMM/Scan ORs several
ANDed expressions in an integrated fashion, and presents
the results as one integrated whole where each record appears
only once.

These results suggest that a registry might continue its
existing deduplication processes, but might periodically per-
form an integrated analysis (ORing high-valued ANDed
pairs of data elements) to allow more global and integrated

assistance in deduplication. It is important to point out that
the OR operator has the potential to be very computationally
intensive. By judicious programming, however, it was possi-
ble to structure IMM/Scan’s analysis so that the Boolean
predicates shown in Tables 1–3 could be performed quite
efficiently. For example, the complex predicate “(LN &
DOB) . (LN & FN) . (LN & SSN) . (DOB & FN) . (DOB &
SSN)” was computed in 2–3 h for each of the two large
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data sets using a dual-processor 550 MHz PC with 512 MB
of RAM. It was important to structure the program so that
each record was not compared against every other record,
which could be prohibitive computationally. (This might
take weeks or more to compute for a large data set.) In our

programming approach, we used sorting and partitioning of

intermediate results to avoid this problem.

A final comment concerns the use of the social security
number (SSN) in deduplication. Although SSN is present
in only 13–31% of the records in our test data sets, when
it is present, it can have a significant impact in identifying
TPs while reducing FPs. This confirms the potential value
of a unique patient identifier in patient record deduplication.

4. EXPLORING THE UTILITY OF VACCINATION
HISTORY DATA

The second study explores how vaccination history data
might assist in the deduplication process. Although the prob-
lem of deduplicating vaccination history records has been
addressed [9], the authors are aware of no other published
work that has explored the utility of vaccination history data
in immunization patient record deduplication.

One problem in designing an automated tool to compare
vaccination histories is defining exactly how that tool should
operate. When a human registry staff member compares two
vaccination histories, that person uses a wide variety of
knowledge about factors such as immunization schedules,
temporal relationships, and likely types of data errors, to
make an intelligent assessment as to whether they might
involve the same patient. At the same time, making such an
assessment for many records would be very time-consuming
and would likely be performed inconsistently.

This paper explores how two heuristics (computational
“rules of thumb”) can be applied to help determine whether
two immunization histories involve the same patient or not.
As described later in the paper, the first heuristic counts the
number of “identical doses” in the combined history of two
records, and the second heuristic calculates an “extra dose
penalty” when the combined history contains too many doses
for the patient’s age. A software tool can apply these heuris-

tics automatically, consistently, and very rapidly.

4.1. Selecting “Matching” and “Nonmatching” Pairs of
Patient Records

This study was performed using the database of a large
state immunization registry, containing roughly 430,000 pa-
tient records, prior to that state’s own record deduplication
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efforts. This database was a merged set of records provided
by a variety of sources, including insurance companies,
health maintenance organizations, and individual providers.

We first built a software tool designed to randomly select
“matching” and “nonmatching” pairs of patient records
based on demographic data. This tool allows the user to
specify (1) an age range, (2) a set of demographic data items
to consider, (3) the number of record pairs desired, and (4)
whether matching or nonmatching records pairs are desired.
Using this tool, we created a total of 6 sets of randomly
selected record pairs. One matching set of pairs and one
nonmatching set of pairs were identified for each of the
following three age ranges: 12–23 months of age, 24–35
months of age, and 36–47 months of age. Each set contained
1000 record pairs.

Matching pairs. Each matching pair of records was se-
lected with the requirement that each record have the identi-
cal birth date, first name, and last name. We also checked
to make sure that if both records had values for middle
name, mother’s maiden name, or social security number,
that these were also identical in both records. The goal was
to assure, as much as possible, that each pair of records
involved the same patient. In addition, the vaccination his-
tory of each record was required to contain at least one DTP
series dose and one polio series dose.

Nonmatching pairs. Each nonmatching pair of records
was selected with the requirement that each record have the
identical birth date, a different first name, and a different
last name. Each nonmatching pair was inspected to assure
that there was nothing in the patients’ names to suggest that
they might be the same patient (for example, minor spelling
differences in the first and last names). The goal was to
assure, as much as possible, that each pair of records in-
volved different patients who had the same birth date. In
addition, the vaccination history of each record was required
to contain at least one DTP series dose and one polio se-
ries dose.

4.2. Applying the History Comparison Heuristics

To carry out the analysis, we wrote a computer program

that performed the steps outlined below. The first step in-
volved inspecting the vaccination history associated with
each individual record and removing “duplicate” doses. A
duplicate dose pair was defined as two doses in the same
vaccine series recorded as given on the same date. For exam-
ple, if a patient record indicated that a DT dose and a DTaP
dose were each given on 3/1/99, then one of those doses
was arbitrarily selected and removed.
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Heuristic 1. Once these duplicate doses had been re-
moved from each individual record, each pair of records
was inspected to count the number of “identical” DTP doses
and polio doses that were contained in the combined vaccina-
tion history of both records. Two doses were considered
“identical” for this purpose if they were in the same vaccine
series and had the same date. Only the DTP and polio series
were considered. For example, the following record pair
would be considered to have two identical DTP series doses
and one identical polio series dose (see italics).

Record 1: DTP 1/1/98, 4/1/98, 7/1/98; IPV 1/1/98, 4/1/98
Record 2: DTaP 1/1/98; DTP 7/1/98; OPV 1/1/98, 5/1/98

Heuristic 2. The second heuristic was also calculated
using the DTP and polio vaccination histories of each record
pair. This heuristic was designed to help assess if the com-
bined history of both records had more doses for a series
than one would expect at several specified ages, and if so,
to compute an “extra dose penalty.”

The top portion of Table 4 shows the values used to
compute this penalty for DTP. The first column lists several
ages (expressed in weeks, months, or years) and the second
column indicates the expected number of DTP series doses
that a child should normally have received by that age. If

the combined history contains more doses than expected for
a given age, the next columns indicate a dose penalty to be

3 years 4
6 years 5

Polio series 9 weeks 1
13 weeks 2
3 years 3
5 years 4

Note. The top portion of this table shows the “extra dose penalty” assi
expected at any specified age. For each combined history of a record pair
of the table shows the same information for polio.
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before this age, then a penalty of 230 is assigned, and so
on. The combined history for a record pair is analyzed in
this fashion for each age specified in the table. The maximum
penalty assigned for any age is then assigned to the pair.
The bottom portion of Table 4 shows the values used to
calculate the extra dose penalty for the polio vaccine series.

Inspection of anomalous record pairs. After examining
the results of applying the two heuristics, a small number
of matching record pairs were identified as “anomalous.”
These records appeared to be the same patient based on
demographic data, but the results of applying the heuristics
suggested either (1) that two different patients were involved
or (2) that a data error had occurred. We examined both
the demographic data and the vaccination histories of these
anomalous matching pairs, and prepared a table outlining
the apparent explanation for the anomalies.

4.3. Results

Identical doses. Table 5 shows the results of applying
heuristic 1, counting “identical” doses in each pair of records.
The results are presented first for the DTP series and then
for the polio series. Finally, combined figures are shown.

The four columns on the left provide the results for the 3000
matching pairs. For each observed identical dose value, we
assigned. The higher the number of extra doses, the higher first show the percentage of the 3000 matching pairs which
had that number of identical doses. The next three columnsthe penalty (which is expressed as a negative number).

For example, by age 13 weeks, a child is expected to have show the actual number of pairs for each age range. The
rightmost four columns provide similar figures for the 3000received no more than two DTP series doses. If three doses

were recorded in the combined history before this age, then nonmatching record pairs. In comparing the results for
matching pairs vs nonmatching pairs, there is a strikinga penalty of 25 is assigned. If four doses were recorded

TABLE 4

Extra dose penalty

Age Expected doses 11 dose 12 doses 13 doses or more

DTP series 9 weeks 1 25 230 240
13 weeks 2 25 220 240
11 months 3 25 215 240
25 210 240
25 25 240
25 230 240
25 220 240
25 215 240
25 210 240

gned to a combined DTP series history if it contains more doses than
, the penalty is calculated as described in the text. The bottom portion



2 27.1 355 242 215 5.8 64 47 62
3 4.2 18 50 58 0.1 1 2 1
4 19.3 203 194 183 0.3 6 3 1

1

5 7.0 52 62
6 15.0 147 195
7 9.5 18 102
8 0.9 1 9
9 — 0 0
Total 100 1000 1000

difference. For example, 93% of the nonmatching pairs had
no identical doses at all in these vaccine series. In contrast,
83.8% of the matching pairs had one or more identical doses.

Extra dose penalty. Table 6 shows the results of applying
heuristic 2, calculating an “extra dose penalty” for each pair
of records. The format of this table is similar to that of
Table 5. In comparing the results for matching pairs vs
nonmatching pairs, there is again a major difference. Here,

82.3% of the matching pairs had a penalty of zero. Only
9.4% of the nonmatching pairs had a penalty of zero, while
45% had a penalty of 235 to 280 when the series penalties
were combined.

Combining the two heuristics. Figure 1 shows a matrix
which correlates the results for identical doses against the
results for extra dose penalties, using the numbers from
Tables 5 and 6 for DTP and polio combined. For each cell
95 — 0 0 0
108 — 0 0 0
165 — 0 0 0
16 — 0 0 0

1 — 0 0 0
000 100 1000 1000 1000

in this matrix, Fig. 1 first shows the relevant percentage of
matching pairs, followed by the percentage of nonmatching
record pairs. For example, the top-left cell indicates that
9.6% of matching record pairs and 8.2% of nonmatching
record pairs have zero identical doses and a zero penalty.
To help better understand these numbers, we have shaded
two sets of cells, one set with dark shading and the other
set with light shading.

Inspection of the dark-shaded cells shows that these pairs
DEDUPLICATING IMMUNIZATION PATIENT RECORDS 47

TABLE 5

Identical Doses in Matching and Nonmatching Record Pairs

Matching record pairs Nonmatching record pairs

# % 12–23 24–35 36–47 % 12–23 24–35 36–47
Identical Doses (12–47 months) months months months (12–47 months) months months months

DTP Series
0 16.3 202 138 149 93.1 925 940 929
1 28.5 364 263 229 6.4 67 55 69
2 22.9 217 233 237 0.5 8 5 2
3 21.6 195 251 201 — 0 0 0
4 10.7 22 115 183 — 0 0 0
5 — 0 0 1 — 0 0 0
Total 100 1000 1000 1000 100 1000 1000 1000

Polio series
0 17.1 204 146 162 93.7 930 947 933
1 30.9 373 282 273 6.0 64 50 65
2 26.3 256 264 269 0.4 6 3 2
3 24.7 166 299 277 — 0 0 0
4 0.9 1 9 18 — 0 0 0
5 — 0 0 1 — 0 0 0
Total 100 1000 1000 1000 100 1000 1000 1000

DTP & polio
0 16.2 200 137 148 93.0 925 939 925
1 0.9 6 9 11 0.8 4 9 11
are highly likely to be nonmatching. Here, 88.4% of the
nonmatching pairs fall in these cells, while only 6.7% of
the matching pairs do. We have therefore labeled these cells
“likely to be different patients.” Similarly, pairs in the lightly
shaded cells are highly likely to be matching. Here, 78.5%
of the matching pairs fall in these cells, while only 1.5% of
the nonmatching cells do. We have therefore labeled these
cells “likely to be the same patient.”



220 to 240 0.8 2 11 11 33.7 206 406 400
Total 100.0 1000 1000 1000 100.0 1000 1000 1000
DTP and polio
0 82.3 874 784
25 to 210 13.1 115 143
215 to 220 1.8 5 27
225 to 230 1.8 4 33
235 to 280 1.0 2 13
Total 100.0 1000 1000

The top left cell (zero identical doses and zero penalty)
is interesting because roughly the same percentage (8–9%)

of matching and nonmatching record pairs falls in this cell.

FIG. 1. A matrix correlating the results for the two heuristics, using t
groups are combined. For each cell in this matrix, the relevant percentage
of nonmatching pairs.
811 9.4 125 74 83
134 23.0 258 217 215
22 9.6 114 87 88
17 13.0 150 127 113
16 45.0 353 495 501

1000 100.0 1000 1000 1000

of these record pairs in detail. Table 7 summarizes the results.
In 36 record pairs, one history used a default number for
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TABLE 6

“Extra Dose” Penalty for Matching and Nonmatching Record Pairs

Matching record pairs Nonmatching record pairs

% 12–23 24–35 36–47 % 12–23 24–35 36–47
Penalty (12–47 months) months months months (12–47 months) months months months

DTP series
0 85.8 888 821 864 12.5 149 105 122
25 10.9 103 127 97 23.7 256 231 223
210 to 215 2.4 7 40 24 22.1 267 203 193
220 to 240 1.0 2 12 15 41.7 328 461 462
Total 100.0 1000 1000 1000 100.0 1000 1000 1000

Polio series
0 84.3 893 800 836 12.5 171 97 108
25 11.6 99 133 116 27.7 344 248 240
210 to 215 3.3 6 56 37 26.0 279 249 252
the day-of-month (e.g., all doses were recorded as given on

On inspection, these tend to be record pairs where each the first of the month), while the other history was identical
record contains only a portion of a normal vaccination his- but had different numbers for day-of-month. Nineteen pairs
tory for the DTP and polio series. had histories that were identical except for slight date varia-

tions; for example, the day of the month for each dose inInspection of anomalous matching record pairs. To bet-
one history might be one day later than in the other history.ter understand why a small number of matching record pairs
Other data errors included likely keystroke error, early dateshad high extra dose penalties, we examined the demographic

information and the individual vaccination histories of 136 (before the recorded date of birth), or otherwise invalid dates
he numbers for DTP and polio combined from Tables 5 and 6. All age
of matching record pairs is first displayed, followed by the percentage



Default day-of-month used 36
Slight day-of-month variation 18

Likely keystroke error 19
Early and/or invalid dates 17
Totally different histories 42
Partially different histories 23
Other data anomalies 1

Total: 156

Note. 136 pairs were analyzed. 20 of these exhibited two problems.

for doses. For 65 pairs, the two records had totally or partially
different histories. Theoretically, these pairs might involve
different patients with the same first name, last name, and
date of birth, although there was generally enough demo-
graphic information present to make this seem very unlikely.
After inspection, our assessment was that in most if not all
cases, a data entry or administrative error had probably
associated incorrect history data with one of the patient
records.

4.4. Discussion

The results described above in Section 4 suggest that the
two heuristics have the potential to provide useful assistance
in the immunization record deduplication process, particu-
larly as an adjunct to deduplication based on demographic
data. In this regard, it is useful to consider the following
two scenarios.

1. If a set of high probability duplicate record matches
have been identified based on demographic data, but a few
percent of these matches are expected to involve different
patients, the proposed approach could help identify many
of these false matches.

2. If the registry has set its demographic matching filter
to operate coarsely, thereby identifying a range of relatively

low probability matches, most of which are likely not to be
true duplicates, the proposed approach could help selectively
focus on the true matches.

Limitations of the present study. The potential value of
the approach needs to be assessed in the context of various
limitations inherent in the present study.

1. The data used were derived from a single state registry
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prior to its own deduplication efforts. As a result, the num-
bers and percentages obtained may well differ if the approach
is implemented with other registries, which may have differ-
ent procedures for data entry and validation and/or might
be further along in the record deduplication process.

2. For very young children, for example between 0 and
3 months of age, the approach may well not be as useful
since much less history will be available for comparison.
We were not able to find a sufficient number of matching
record pairs for very young patients in our database to allow
us to perform this analysis. For the three age groups we
did study, there were not major differences between the
performance of each heuristic in the different age groups.
The older matching-pair groups did have somewhat higher
numbers of identical doses, e.g., more pairs had three to five
identical doses in each series, reflecting the probability that
older children have more vaccinations recorded. This was
not a factor in discriminating matching from nonmatching
pairs, however, since none of the nonmatching pairs had
more than two identical doses in a series.

3. The present study focused on the DTP and polio vac-
cine series. These two series were chosen because they have
a relatively large number of recommended doses, compared
for example to Varicella and MMR. Hib would also have
been a reasonable choice. Hepatitis B would not have been
as useful since dose 1 is typically given on the day of birth.
The results for DTP and polio shown in Tables 5 and 6
suggest that the analysis of the two series tends to provide
quite similar information about each record pair. This in turn
suggests that including additional series might not yield
much new information.

4. As described previously, another study restriction was
the requirement that each record have at least one DTP series
dose and at least one polio series dose. If one member of a
record pair does not have any vaccination history recorded,
then the two histories cannot be compared. In a registry, there
will likely be some records with little or no history recorded.

Possible future enhancements of the approach. The
computer cannot realistically be expected to emulate the
behavior of a human focusing sustained attention on compar-
ing two vaccination histories. Nevertheless, the two heuris-
DEDUPLICATING IMMUNIZATION PATIENT RECORDS

TABLE 7

Summary of the Results of Our Manual Analysis of Anomalous
Matching Pairs, as Described in the Text

Reason for anomaly Number of record pairs
tics described in this paper have clear potential value, and
a number of enhancements to the approach could be made.

The most ambiguity in Fig. 1 occurs in the top left cell
(zero identical doses and zero penalty). Here, the histories
of each record pair tend to have only a portion of the entire
history. One enhancement that might help partially resolve
this ambiguity would be to check the intervals between the
doses in each series to see how many were too close together
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in the combined history. If doses were too close together,
this would suggest that different patients were involved.

Another enhancement would be to examine the combined
histories for certain of the types of data errors described in
the section on anomalies. For example, if the histories of
the record pair have doses with the same month and year,
but one history always indicates the first day of the month,
and the other history indicates different days, then this would
suggest that the patient might be the same, even though there
might be no identical doses and a high extra dose penalty.
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